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1. Introduction
In Major League Baseball (MLB), there are many 
projection systems attempting to predict the numbers of 
wins achieved by teams in a season. These projections 
are usually made prior to the start of the season. 
Player Empirical Comparison and Optimization 
Test Algorithm (PECOTA), sZymborski Projection 
System (ZiPS), and FanGraphs are three well known 
projection systems in MLB. We wish to compare 
the predicted wins of these three projection systems 
for the seasons of 2013-2024. Thus the projected 
wins as well as the observed wins of MLB teams are 
compiled for this period to compare the effectiveness 
of the predictions of these three projection systems. 
Chu and Wang (2019) suggested that the preseason 
projected wins could be used to help assess whether 

a team’s belief in analytics has a positive impact on 
the team.
We first consider the sum of squares of the difference 
between the projected wins and observed wins for 
each of these three systems. However, this squared 
mathematical distance does not take into account 
various random factors affecting the numbers of 
games won by teams in a season. Rather, the squared 
statistical distance or Mahalanobis distance between 
the projected wins and observed wins will be 
examined here. Three models are proposed based on 
which we assess the Mahalanobis distance of these 
three projection systems.
As a first approximation, we assume in Model 1 
that the numbers of wins obtained by teams are 
independent. Each number of wins can be regarded 
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as a binomial random variable. As there are 30 
teams in MLB, the Mahalanobis distance follows 
approximately a chi-square distribution with 30 
degrees of freedom. Under the null hypothesis that 
the projected wins are plausible values of the actual 
wins for all 30 MLB teams in a given year, we are 
able to calculate the observed Mahalanobis distance 
and the corresponding p-value. This p-value allows 
us to reach the conclusion whether all the differences 
between projected and actual wins are statistically 
significant or not for a particular projection system.
Model 2 imposes the correlation structure for the 
numbers of wins obtained by teams. Three different 
kinds of correlation structures are considered: linear, 
squared, and logarithmic. However, only the squared 
and logarithmic structures are suitable for computing 
the Mahalanobis distance because the associated 
variance-covariance matrices are invertible.
The number of wins obtained by a team is further 
broken down into the sum of numbers of wins in the 
matchup games against each team. This approach in 
Model 3 gives us a more precise assessment for each 
number of wins in the matchup games. The covariance 
between the numbers of wins obtained by two different 
teams will be estimated. A new variance-covariance 
matrix can then be formulated to recalculate a more 
accurate Mahalanobis distance between the projected 
wins and observed wins. These three models are 
shown in Section 2.

In professional sports such as National Hockey League 
(NHL) and National Basketball Association (NBA), 
there are matchup games for one team playing against 
another team. Hence the idea of the matchup games 
model introduced here could be extended to these 
kinds of sports for assessing the accuracy of teams’ 
projected wins.

Bonferroni confidence intervals, confidence ellipsoids 
in higher dimensional spaces, and Benjamini-
Hochberg procedure for multiple hypothesis testing 
are used to compare the effectiveness of these three 
projection systems. These results are presented in 
Section 3.

In Section 4, simulations are implemented to generate 
1,000 realizations to test the null hypothesis mentioned 
above by observing how many Mahalanobis distances 
falling outside the 95% confidence interval. Benjamini-
Hochberg procedure for multiple hypothesis testing 
is employed again to compare these three projection 
systems. All the calculations and simulations are done 
via the statistical software R.

The checking of the validity of normality assumption 
will be discussed in Section 5. Finally, conclusion and 
comments are given in Section 6.

2. Modeling
Let W1, W2, ...,W30 be the projected wins for the 
30 MLB teams in a season. PECOTA, ZiPS, and 
FanGraphs will be one of the three projection systems 
that generates these projected wins. Suppose that x1, 
x2, ..., x30 be the corresponding observed wins for 
these 30 MLB teams in that particular season. To 
measure the accuracy of the projected wins generated 
by a projection system, one may consider the squared 
mathematical distance

D0  =  (x1 − W1)
2 + (x2 − W2)

2 + ... + (x30 − W30)
2.

Then one may compare the three different values of 
D0 produced by PECOTA, ZiPS, and FanGraphs. 
The smaller the value of D0, the better the projection 
system is to generate the projected wins for MLB 
teams. However, where do we draw the line on the 
value of D0 beyond which the projection system is 
deemed to be not effective in generating the projected 
wins for teams. We need to develop some models to 
help answer this question.
2.1 Model 1

As each MLB team usually plays n = 162 games in 
a season, the projected winning percentage for Team 
i is Wi/n, i = 1, 2, ..., 30. Note that only 60 games 
were played by each team during the pandemic year 
in 2020. The observed wins xi can be regarded as an 
observed value from a random variable Xi representing 
the number of games won by Team i in a season. For 
the time being, let us assume the independence of the 
winning of games for each team, i.e., the winning of 
one game for a team does not affect its winning of 
another game. Hence the random variable Xi can be 
treated as a binomial random variable with parameters 
n and pi, where n is the number of games played in a 
season and pi is the probability of winning a game 
for Team i. (If a team does not play 162 games in a 
season, then n will be adjusted accordingly.) Let µi 
and σᵢ2 be the mean and variance of Xi, respectively.

It is well known that Xi can be approximated by 
a normal distribution when n is large. In practice, 
this approximation is adequate whenever n⁎pi ≥ 15 
and n⁎(1 − pi) ≥ 15. These conditions imply that the 
number of wins and number of losses are both at least 
15 games in a season. Since 162 games are played 
by each team in a season, these two conditions are 
certainly satisfied by each team.
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Suppose we further assume the independence of 
Xi and Xj for all i and j, i ≠ j. We then consider the 
squared statistical distance or Mahalanobis distance 
of X = [X1, X2, ..., X30]

′ that is to measure the distance 
between X and its mean while taking into account the 
shape of  the  distribution. In this case, we have 

D1 = + +…+               (1)               

Each term ((Xi − µi)/σi)
2 in (1) has approximately a chi-

square distribution with 1 degree of freedom. Based 
on the assumption of the independence of Xi, it seems 
that D1 has approximately a chi-square distribution 
with 30 degrees of freedom. Since there is rarely a 
tie in an MLB game, the sum of Xi can be treated as 
a constant that is the total number of games played in 
a season, i.e., 162*30/2 = 2430. Hence the number of 
degrees of freedom is adjusted to 29.
We wish to test H0: Projected wins are plausible values 
of the actual wins for all 30 MLB teams in a given year 
versus Ha: Projected wins are not plausible values of 
the actual wins for all 30 MLB teams in that given year 
(i.e., at least one projected win is not plausible). We 
will consider three sets of hypothesis testing, one for 
each projection system: PECOTA, ZiPS, FanGraphs. 
Since the winning percentage is the number of 
wins/n, the above hypothesis testing is equivalent to 

testing the projected winning percentages (Wi/n =  ) 
are plausible values of the actual winning percentages 
(pi) for all MLB teams. Hence H0 is changed to pi=  
, i = 1, 2, ..., 30. The mean and variance of Xi, under 
H0, can be estimated by

 = n = Wi                                                          (2)
 = n (1 − ) = Wi(1 − Wi/n)                            (3) 

Table 1 shows the distance D1 between the observed 
wins of MLB teams and the projected wins of 
PECOTA, ZiPS, and FanGraphs for 2013-2024. 
The corresponding p-values are also given in the 
parentheses. We notice that all p-values, except 
PECOTA (2020), ZiPS (2016, 2020), and FanGraphs 
(2013, 2016, 2020), were less than 0.05. Note that 
Year 2020 was an unusual MLB season during the 
pandemic. Other than these six instances, with 5% 
level of significance, there was sufficient evidence 
to show that the projected wins produced by each 
of these three projection systems were not plausible 
values of the actual wins for all 30 MLB teams for 
2013-2024. It implies that at least one projected win 
was significantly different from the corresponding 
actual win. For these six instances, however, there 
was insufficient evidence to show any significant 
difference of at least one projected win and the 
corresponding actual win.

Table 1. Using Model 1 to calculate D1, with p-value in parentheses, between the observed wins of MLB teams and 
the projected wins of PECOTA, ZiPS, and FanGraphs for 2013-2024.

Year PECOTA ZiPS FanGraphs
2024 70.5 (2.5E-5) 56.2 (1.8E-3) 61.0 (4.6E-4)
2023 93.3 (1.1E-8) 89.0 (5.1E-8) 84.8 (2.2E-7)
2022 68.7 (4.6E-5) 74.0 (8.3E-6) 71.4 (2.0E-6)
2021 123.4 (1.3E-13) 100.8 (7.3E-10) 102.8(3.5E-10)
2020 39.9 (8.6E-2) 36.8 (1.5E-1) 42.2 (5.4E-2)
2019 68.3 (5.1E-5) 61.5 (4.0E-4) 75.6 (5.1E-6)
2018 67.5 (6.2E-5) 77.9 (2.3E-6) 81.6 (6.8E-7)
2017 60.0 (6.2E-4) 66.5 (9.1E-5) 64.6 (1.6E-4)
2016 53.1 (4.1E-3) 35.2 (1.9E-1) 40.2 (8.1E-2)
2015 74.3 (7.5E-6) 64.1 (1.9E-4) 63.2 (2.4E-4)
2014 57.5 (1.3E-3) 55.2 (2.3E-3) 49.5 (1.0E-2)
2013 63.5 (2.2E-4) 65.7 (1.2E-4) 38.5 (1.1E-1)

During the period of 2013-2024, PECOTA had 
the smallest values of D1 (or larger p-values) for 3 
years, ZiPS for 5 years, and FanGraphs for 4 years. 
A smaller value of D1 implies a shorter statistical 
distance between the projected wins and actual wins 
after variances are taken into account. So the smaller 
the value of D1, the better the projection system 
performs.

2.2 Model 2

The assumption of independence of Xi and Xj, for i ≠ 
j, may not hold true in Model 1. It is because the sum 
of all variables X1 + X2 + ... + X30 = 2430, which is a 
constant. When a team wins a baseball game, it means 
another team loses a game. This is due to the fact that 
it is a zero-sum game and there is (almost) no tie for 
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a game. Hence some correlation may exist between Xi 
and Xj. Let the correlation between Xi and Xj, i, j = 1, 2, 
..., 30, i ≠ j, be 

 =  ,

where σi,j is the covariance between Xi and Xj, and σi is 
the standard deviation of Xi. Thus,

 = .

Negative (or non-positive) correlation is expected 
to exist between Xi and Xj because of the zero-sum 
games. Let mi,j be the number of baseball games 
played between Teams i and j, where i ≠ j. Note that 

mi,j = mj,i and mi,i = 0 for all i. For the extreme cases: 
when mi,j = 0, it implies that ρi,j = 0; when mi,j = 162, 
it implies that ρi,j = −1. Furthermore, when 0 < mi,j < 
162, we have −1 < ρi,j < 0. As mi,j increases from 0 to 
162, the value of ρi,j decreases from 0 to −1.

Here we consider three models for ρi,j, i ≠  j, satisfying 
all conditions mentioned above. 

Model 2a: ρi,j = −mi,j/162 (a linear model);

Model 2b: ρi,j = −(mi,j/162)2 (a squared model);

Model 2c: ρi,j = − log2((mi,j/162) + 1) (a logarithmic 
model).

Figure 1 displays the graphs of functions ρi,j’s in 
Models 2a-2c. 

Figure 1. Graphs of functions in Models 2a-2c with the top graph from the squared model, middle graph the linear model, and 
bottom graph the logarithmic model.

The correlation matrix is given by
	
  
        =     

                                                                                 (4)
The variance-covariance matrix is given by                                                                                       

=  =     

                                                                                 (5)   
where Λ is a 30×30 diagonal matrix with diagonal 
elements σ1, σ2, ..., σ30.
Suppose that X = [X1, X2, ..., X30]

′ follows a multivariate 
normal distribution N30(µ, Σ), where the mean vector 

is µ = [µ1, µ2, ..., µ30]
′ and variance-covariance matrix 

Σ is given by (5) with ρi,j being one of the values 
shown in Model 2a, 2b or 2c, and  estimated by (3) 
under H0. Let
D2 = (X − µ)′Σ−1(X − µ)                                           (6)
be the Mahalanobis distance between X and µ while 
taking into account the covariances among those 
variables in X. Since the sum of Xi can be treated as 
a constant, Johnson and Wichern (2019) shows that 
D2 has a chi-square distribution with 29 degrees of 
freedom.
When ρi,j = 0, i ≠ j, D2 is reduced to D1 that involves 
no correlations among the variables.  Hence D2 is 
a generalization of D1 when correlations are taken 
into account. In our situation, there are 30 variables 
involved as 30 MLB teams play in a season. So 
each correlation between any two variables might 
not be too large. Would D2 generate a significantly 
different value from that of D1 when all correlations 
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are included in calculating D2? Or would D1 be able to 
provide a good approximation for D2?
Let’s first consider Model 2a.  For fixed j, 
= -  mi,j/162 = −1. It implies that = 0 
as ρi,i = 1 for all i. In this case, the determinant of ρ 
in (4) is zero. Consequently, the inverse of ρ does not 
exist. It implies that the inverse of the corresponding 
variance-covariance matrix Σ in (5) does not exist 
either. As a result, we will not be able to compute D2 
in (6) when ρi,j = −mi,j/162 as shown in Model 2a.
However, the correlation matrix (4) with ρi,j = 
−(mi,j/162)2 given in Model 2b will not generate zero 
determinant.  Therefore, the inverse of the correlation 
matrix exists and so does the corresponding variance-
covariance matrix Σ in (5). Likewise, with the 
condition ρi,j = − log2((mi,j/162) + 1) given in Model 2c, 
both the inverse of correlation matrix and the inverse 

of variance-covariance matrix exist. Therefore, we 
will compute D2 only for the values of ρi,j given in 
Models 2b and 2c.

Table 2 shows the distance D2 between the observed 
wins of MLB teams and the projected wins of PECOTA, 
ZiPS, and FanGraphs for 2013-2024, using Model 2b. 
All p-values, except PECOTA (2020), ZiPS (2016, 
2020), and FanGraphs (2013, 2016, 2020), were less 
than 0.05. Other than these six instances, with 5% 
level of significance, there was sufficient evidence to 
show that the projected wins produced by these three 
projection systems were not plausible values of the 
actual wins for all 30 MLB teams for 2013-2024.

For the period of 2013-2024, PECOTA had the 
smallest value of D2 for 3 years, ZiPS for 5 years, and 
FanGraphs for 4 years.

Table 2. Using Model 2b to calculate D2, with p-value in parentheses, between the observed wins of MLB teams and the 
projected wins of PECOTA, ZiPS, and FanGraphs for 2013-2024

Year PECOTA ZiPS FanGraphs
2024 70.3 (2.8E-5) 55.9 (1.9E-3) 60.8 (4.9E-4)
2023 92.9 (1.3E-8) 88.7 (5.7E-8) 84.5 (2.5E-7)
2022 68.0 (5.7E-5) 73.4 (1.0E-5) 70.7 (2.4E-5)
2021 122.2 (2.1E-13) 100.0(1.0E-9) 102.1 (4.5E-10)
2020 24.0 (7.3E-1) 22.4 (8.0E-1) 25.4 (6.6E-1)
2019 67.7 (6.3E-5) 60.9 (4.8E-4) 74.8 (6.6E-6)
2018 67.2 (7.2E-5) 77.5 (2.7E-6) 81.1 (8.0E-7)
2017 59.4 (7.4E-4) 65.7 (1.2E-4) 64.1 (1.9E-4)
2016 52.6 (4.6E-3) 34.9 (2.1E-1) 39.8 (8.8E-2)
2015 74.0 (8.4E-6) 63.5 (2.2E-4) 62.7 (2.8E-4)
2014 57.2 (1.4E-3) 54.8 (2.6E-3) 49.3 (1.1E-2)
2013 62.8 (2.7E-4) 64.9 (1.5E-4) 38.1 (1.2E-1)

Table 3 shows the distance D2 between the observed 
wins of MLB teams and the projected wins of 
PECOTA, ZiPS, and FanGraphs for 2013-2024, using 
Model 2c. The p-values of PECOTA (2014, 2020), 
ZiPS (2014, 2016, 2020), and FanGraphs (2013-2016, 
2018, 2020) were greater than 0.05. With 5% level of 
significance, there was insufficient evidence to reject 
the null hypothesis that the projected wins of the 30 

MLB teams were plausible values of their actual 
wins for these years. Besides these eleven instances, 
there was sufficient evidence to show that at least one 
projected win was not a plausible value of the actual 
win of these 30 MLB teams.
PECOTA, ZiPS, and FanGraphs had the smallest 
value of D2 for 3, 4, and 5 years, respectively, during 
the period of 2013-2024.

Table 3. Using Model 2c to calculate D2, with p-value in parentheses, between the observed wins of MLB teams and the 
projected wins of PECOTA, ZiPS, and FanGraphs for 2013-2024

Year PECOTA ZiPS FanGraphs
2024 68.6 (4.7E-5) 53.0 (4.2E-3) 59.7 (6.8E-4)
2023 88.4 (6.4E-8) 84.0 (2.9E-7) 83.4 (3.7E-7)
2022 58.8 (8.6E-4) 62.1 (3.4E-4) 62.6 (2.9E-4)
2021 50.1 (8.9E-3) 69.6 (3.4E-5) 83.0 (4.2E-7)
2020 23.0 (7.7E-1) 21.5 (8.4E-1) 24.6 (7.0E-1)
2019 57.5 (1.2E-3) 53.5 (3.7E-3) 64.1 (1.8E-4)
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2.3 Model 3
To improve the covariance structure of Σ, we 
decompose each Xi (the total number of games won 
by Team i in a season) into Xi,j (the number of games 
won by Team i over Team j in that season). More 
specifically,
         X1= X1,1 + X1,2 + ... + X1,30                                              (7) 

         X2 = X2,1 + X2,2 + ... + X2,30                                                         (8)
          ˸        ˸
          ˸        ˸
          X30= X30,1+ X30,2+ ... + X30,30                                  (9)

Note that Xi,i = 0, i = 1, 2, ..., 30. Because of zero-
sum games, we have Xi,j + Xj,i = mi,j (or mj,i) that is 
the number of games played between Teams i and j, 
where i, j = 1, 2, ..., 30 and i ≠ j. For example, Arizona 
and Colorado played 19 games against each other 
in 2022; however, Arizona and Baltimore did not 
play any game against each other in that year. The 
numbers of matchup games between teams might 
also be changed from one year to another year, e.g., 
Arizona and Colorado played only 13 games against 
each other in 2023.
Let us first consider the covariance between X1 and 
X2. Due to the independence of games Teams 1 and 2 
played against Teams 3, 4, ..., 30 (i.e., Cov(X1,2, X2,j) = 
0, j = 3, 4, ..., 30 and Cov(X1,i, X2,j) = 0, i, j = 3, 4, ..., 
30), the covariance between X1 and X2 becomes
Cov(X1, X2) = Cov(X1,1+X1,2+ ... +X1,30, X2,1+ X2,2+ ...+ X2,30) 

                  = Cov(X1,2, X2,1)

                  = Cov(X1,2, m1,2 − X1,2)

                  = −Cov(X1,2, X1,2)                                   (10)   
Cov(X1,2, m1,2) is zero because m1,2 is a fixed number. 
The covariance term Cov(X1,2, X1,2) is simply the 
variance term Var(X1,2). X1,2 can be regarded as a 
binomial random variable with parameters m1,2 and 
p1,2, where m1,2 is the number of games played between 
Teams 1 and 2, and p1,2 is the probability that Team 1 
will win over Team 2 in a game. Thus the variance of 
X1,2 is m1,2 ∗ p1,2 ∗ (1 − p1,2). Similarly, the variance of 
X2,1 is m2,1 ∗ p2,1 ∗ (1 − p2,1), where m2,1 = m1,2 and p2,1 
is the probability that Team 2 will win over Team 1 in 

a game. Note that p1,2 + p2,1 = 1. Since Cov(X1, X2) = 
Cov(X2, X1), it implies that Var(X1,2) = Var(X2,1). Thus 
p1,2 ∗ (1 − p1,2) = p2,1 ∗ (1 − p2,1), and this equation is 
always true since p1,2 + p2,1 = 1.
Under the equivalent percentage version of H0, i.e., 
pi = Wi/n, i = 1, 2, ..., 30, p1,2 can be estimated by 
p1/(p1 + p2) = (W1/n)/((W1/n) + (W2/n)) = W1/(W1 + 
W2). Similarly, p2,1 can be estimated by p2/(p1 + p2) = 
(W2/n)/((W1/n) + (W2/n)) = W2/(W1 + W2). With these 
estimations, p1,2 + p2,1 is always 1. Hence, Cov(X1, X2) 
in (10) can be estimated by −m1,2∗ W1/(W1 + W2) ∗ 
W2/(W1 + W2) under H0. Similarly, Cov(X2, X1) can be 
estimated by −m2,1 ∗ p2,1 ∗ (1 − p2,1) = −m1,2 ∗ W2/(W1 
+ W2) ∗ W1/(W1 + W2), which is the estimated value 
of Cov(X1, X2). By following the above procedure for 
the general terms i ≠ j, Cov(Xi, Xj) = Cov(Xj, Xi) can 
be estimated by
−mi,j ∗ Wi/(Wi + Wj) ∗ Wj/(Wi + Wj) under H0.     (11)
The mean and variance of Xi, i = 1, 2, ..., 30, are 
estimated by (2) and (3), respectively, under H0. 
Therefore, the variance-covariance terms Cov(Xi, Xj), 
i, j = 1, 2, ..., 30, shown in (3) and (11) can be computed 
directly to form the entries of Σ in (6). With this matrix 
Σ, we are able to compute its inverse. The value of D2 
in (6) can then be calculated to compare the distance 
between the observed wins of MLB teams and the 
projected wins of PECOTA, ZiPS, and FanGraphs for 
2013-2024 under H0. The corresponding p-values can 
also be evaluated using the chi-square distribution 
with 29 degrees of freedom. The results are given in 
Table 4.
The p-values of PECOTA (2016, 2020), ZiPS (2016, 
2020), and FanGraphs (2013, 2016, 2020) were 
greater than 0.05. With 5% level of significance, there 
was insufficient evidence to reject the null hypothesis 
that the projected wins of the 30 MLB teams were 
plausible values of their actual wins for these years. 
Besides these seven instances, there was sufficient 
evidence to show that at least one projected win was 
not a plausible value of the actual win of the 30 MLB 
teams.
PECOTA had the smallest value of D2 for 3 years, 
ZiPS 4 years, and FanGraphs 5 years during the period 
of 2013-2024.

2018 60.9 (4.8E-4) 72.1 (1.5E-5) 9.3 (9.9E-1)
2017 53.6 (3.6E-3) 58.0 (1.1E-3) 54.4 (2.9E-3)
2016 47.7 (1.6E-2) 31.2 (3.6E-1) 33.9 (2.4E-1)
2015 49.2 (1.1E-2) 56.5 (1.6E-3) 39.3 (9.7E-2)
2014 39.5 (9.2E-2) 38.5 (1.1E-1) 13.6 (9.9E-1)
2013 50.5 (8.0E-3) 57.4 (1.3E-3) 33.9 (2.4E-1)
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Table 4. Using Model 3 to calculate D2, with p-value in parentheses, between the observed wins of MLB teams and the 

projected wins of PECOTA, ZiPS, and FanGraphs for 2013-2024

Year PECOTA ZiPS FanGraphs
2024 67.9 (5.8E-5) 52.8 (4.4E-3) 57.4 (1.3E-3)
2023 89.0 (5.2E-8) 85.0 (2.1E-7) 82.6 (4.8E-7)
2022 62.1 (3.4E-4) 67.1 (7.5E-5) 64.0 (1.9E-4)
2021 117.7 (1.2E-12) 94.4 (7.5E-9) 97.3 (3.0E-9)
2020 39.7 (8.9E-2) 23.5 (7.5E-1) 5.4 (9.9E-1)
2019 63.5 (2.2E-4) 56.3 (1.7E-3) 67.1 (7.0E-5)
2018 63.6 (2.2E-4) 70.6 (2.5E-5) 83.0 (4.2E-7)
2017 55.2 (2.3E-3) 60.5 (5.4E-4) 60.8 (4.9E-4)
2016 31.6 (3.4E-1) 29.7 (4.3E-1) 33.6 (2.5E-1)
2015 70.8 (2.4E-5) 59.3 (7.5E-4) 53.8 (3.4E-3)
2014 56.3 (1.7E-3) 53.0 (4.2E-3) 47.5 (1.7E-2)
2013 55.8 (2.0E-3) 59.3 (7.5E-4) 34.6 (2.2E-1)

3. Confidence Regions
3.1 Bonferroni Confidence Intervals
From Model 1, Xi can be treated as a binomial random 
variable with parameters n = 162 and pi. The unknown 
pi can be estimated by = xi/n, where xi is the number 
of observed wins for Team i in a season. Hence an 
approximately 95% confidence interval for pi, i = 1, 
2, ..., 30, is
   	                   
                                                                               (12)
where z0.025 = 1.960 is the upper 2.5% critical value of 
the standard normal distribution.

Consider the projected winning percentages  = Wi/n, 
i = 1, 2, ..., 30, and see how many of them fall in the 
corresponding confidence interval for pi shown in (12). 
If any one of the ’s does not fall in the corresponding 
confidence interval for pi, then we can say that at 

least one of the projected wins is different from one 
of the actual wins with probability approximately 1 
− (0.95)30 ≈ 0.7854. Therefore, the chances that all 
30 ’s fall in the corresponding confidence interval 
simultaneously are approximately 0.2146.

In order to adjust the overall confidence level from 
21.46% to 95%, we use the Bonferroni confidence 
interval as follows:

        	             (13)              

where i = 1, 2, ..., 30 and z0.025/30 = 3.144. When 
z0.025/30 is used in (13) instead of z0.025, there are 95% 
chances that all 30 projected winning percentages 
’s fall in the corresponding Bonferroni confidence 
interval simultaneously. Table 5 shows the number of 
projected winning percentages for PECOTA, ZiPS, 
and FanGraphs, falling in the corresponding 95% 
Bonferroni confidence interval for 2013-2024.

Table 5. Number of projected winning percentages (out of 30 teams) for PECOTA, ZiPS, and FanGraphs, falling in the 

corresponding 95% Bonferroni confidence interval for 2013-2024

Year PECOTA ZiPS FanGraphs
2024 29 29 29
2023 29 27 28
2022 29 29 30
2021 28 29 28
2020 30 30 30
2019 29 29 29
2018 27 28 29
2017 29 29 29
2016 28 30 30
2015 29 30 30
2014 29 28 30
2013 30 29 30
Mean 28.8 28.9 29.3
St Dev 0.84 0.90 0.78
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It is desirable to see all 30 projected winning 
percentages simultaneously fall in the corresponding 
95% Bonferroni confidence interval. However, only 
PECOTA (2013, 2020), ZiPS (2015, 2016, 2020), and 
FanGraphs (2013-2016, 2020, 2022) had achieved 
this. We see that PECOTA and ZiPS produced the 
similar mean (28.8, 28.9) and comparable values 
(0.84, 0.90) for standard deviation. It seems that 
FanGraphs produced more accurate and precise 
results with higher mean (29.3) and smaller standard 
deviation (0.78). Nevertheless, the One-way Analysis 
of Variance (ANOVA) test shows that there is 
insufficient evidence at 5% level of significance to 
support that the average numbers of projected wins 
simultaneously falling in the corresponding 95% 
Bonferroni confidence interval are not the same for 
these three projection systems.
3.2 Confidence Ellipsoids
Under Models 2b-2c and 3, X = [X1, X2, ..., X30]

′ follows 
a multivariate normal distribution N30(µ, Σ) with the 
mean vector µ and variance-covariance matrix Σ. 
Recall that D2 in (6) has a chi-square distribution 
with 29 degrees of freedom. Hence a 95% confidence 
ellipsoid for µ is
         D2 = (X − µ)′Σ−1(X − µ) ≤  (0.05)            (14)
where  (0.05) = 42.56 is the upper 5% critical 
value of the chi-square distribution with 29 degrees 
of freedom. Under H0, µ can be estimated by [W1, 
W2, ..., W30]

′ shown in (2). With confidence 95%, the 
vector of observed wins x = [x1, x2, ..., x30]

′ should fall 
in the above ellipsoid given in (14).
When D2 is less than or equal to 42.56, this is equivalent 
to the associated p-value greater than 0.05 as seen in 
Tables 2-4. Consequently, we obtain the same results 
and conclusions as presented in Sections 2.2 and 2.3.
3.3 Multiple Hypothesis Testing
The usual naive method of statistical testing on a 
single hypothesis may not be suitable for testing 
multiple hypotheses with the same significance level. 
The Bonferroni method, however, is usually more 
conservative and results in more acceptance of the 
status quo H0. The Benjamini-Hochberg procedure 
for multiple hypothesis testing can be used to test the 
significance of multiple statements. This procedure 
tends to balance the effect of the previous two 

approaches and is helpful in reducing false positives 
(type I error). For more details about the Benjamini-
Hochberg procedure, see their paper (1995) or Tan et. 
al (2019). 
Suppose we wish to test H0 : p1 = w1/162 versus Ha : p1 
≠ w1/162. Under H0, the test statistic is

                  
                                                                               (15)
where n1 (usually 162) is the number of games played 
by Team 1 in a season. We calculate the observed test 
statistic z and then find the corresponding p-value 
called PV1. Repeat the same process for the other 29 
teams to obtain PV2, PV3, ..., PV30. Rearrange these 
p-values in descending order to obtain
          PV(30) ≥ PV(29) ≥ ... ≥ PV(1).                           (16)
Compare these ordered p-values term-wise with 
significance levels  

                                                                               (17)
i.e., compare PV(i) with (i/30)α,i = 1, 2, ..., 30. 
Choose the largest K such that PV(K) ≤ (K/30)α to 
declare that K of the projected winning percentages 
are statistically different from the actual winning 
percentages with significance level approximately α, 
say 5%. The smaller the value of K, the fewer the 
projected winning percentages are different from the 
actual ones and hence the better the projection system 
is. It is desirable to have K = 0, indicating that all 30 
pairs of projected and actual winning percentages are 
not statistically significantly different.
Table 6 displays the multiple hypothesis testing 
for PECOTA, ZiPS, and FanGraphs, showing K 
distinct projected winning percentages from the 
actual winning percentages. PECOTA (2013, 2020), 
ZiPS (2013-2016, 2020, 2022), and FanGraphs 
(2015, 2016, 2020) have K = 0, indicating that there 
was no significant difference between the projected 
and actual winning percentages for these years. 
By comparing the mean of K, it seems that ZiPS is 
preferable. Nevertheless, the One-way ANOVA test 
shows that there is insufficient evidence at 5% level of 
significance to support that the true average numbers 
of projected winning percentages distinct from the 
actual winning percentages are not the same for these 
three projection systems.

Table 6. Multiple hypothesis testing for PECOTA, ZiPS, and FanGraphs, showing K distinct projected winning percentages 

from the actual winning percentages for 2013-2024

Year PECOTA ZiPS FanGraphs
2024 1 1 1
2023 3 3 4
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4. Simulations
Instead of having only one instance/realization of the 
observed wins for each team to be compared with 
the projected wins, simulations are implemented to 
generate 1,000 realizations of the observed wins. This 
allows us to have more extensive comparison of the 
observed wins with the projected wins. By doing so, 
we may be able to achieve more reliable result on the 
effectiveness of the projection systems in forecasting 
the actual wins of MLB teams.

From Model 3, Xi,j (the number of games won by 
Team i over Team j in a season), i ≠ j, can be regarded 
as a binomial random variable with parameters mi,j 
and pi,j, where mi,j is the number of games played 
between Teams i and j, and pi,j is the probability of 
winning for Team i over Team j. The parameter pi,j 
can be estimated by  = xi,j/ni,j, where xi,j is the 
observed wins for Team i over Team j in ni,j games. 
Note that ni,j = mi,j if no game is cancelled and no extra 
game is added in a regular season. If xi,j = 0 or ni,j,  
will be modified to (xi,j + 1)/(ni,j + 2), i.e., adding one 
extra win and one extra loss to the original outcome. 
Thus  will not be 0 or 1 in the simulated binomial 
distribution. Searching from the MLB record books, 
we are able to find all the observed wins xi,j for Team 
i over Team j in ni,j games for each season of 2013-
2024.

Now we run 1,000 simulations using R to generate 
the simulated values for the binomial distribution 

of Xi,j with parameters mi,j and . We only need 
to generate the simulated values of Xi,j for 1 ≤ i < j 
≤ 30. It is not necessary to generate Xj,i because Xj,i 
= mi,j−Xi,j. Note that Xi,i = 0, i = 1, 2, ..., 30. Using 
equations (7)-(9) and the simulated values X*i,j, we 
obtain the simulated value  for Xi, i = 1, 2, ..., 30.
Let X* = [ ,  ..., ]′ be the vector of simulated 
values for X. Then the simulated Mahalanobis 
distance is
             = (X* − µ)′Σ−1(X* − µ)                        (18)
that follows approximately a chi-square distribution 
with 29 degrees of freedom. Under the equivalent 
percentage version of H0, µ in  can be replaced 
by [W1, W2, ..., W30]

′ shown in (2). Applying the 
estimates of Var(Xi) in (3) and Cov(Xi, Xj), i ≠ j, in 
(11), we are able to compute the inverse of Σ in (6 
or 18) and hence the value of  in (18) using the 
simulated value of X*.
We obtain 1,000 observed values of . First, we 
compare them with  (0.05) = 42.56 to see how many 
of them falling outside the 95% confidence interval. 
Second, we do a multiple hypothesis testing using 
Benjamini-Hochberg procedure to  test the significance 
of multiple statements based on the simulated 
, i = 1, 2, ..., 30, over 1,000 times. Following the 
procedures in (15)-(17), we will obtain a value of K 
for each simulation. For 1,000 simulations, we have 
1,000 values of K and then take the average of these 
values of K. The results are given in Table 7.

2022 1 0 3
2021 7 7 6
2020 0 0 0
2019 3 1 1
2018 3 1 3
2017 1 1 1
2016 2 0 0
2015 1 0 0
2014 3 0 2
2013 0 0 1
Mean 2.08 1.17 1.83
St Dev 1.93 2.04 1.85

Table 7. Numbers of observed  >  (0.05) and average K instances showing significant difference between 1,000 
simulated observed wins and projected wins of PECOTA, ZiPS, and FanGraphs for 2013-2024 (* calculating means and 
standard deviations without the simulated results of Year 2020)

Year
PECOTA ZiPS FanGraphs

 > (.05) K    > (.05) K    > (.05) K

2024 435 3.5 262 2.1 238 2.5
2023 516 5.6 423 4.7 333 4.2
2022 426 3.7 357 4.1 348 3.9
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Table 7 shows that, except for 2020 (pandemic year), 
the numbers of values of  falling outside the 95% 
confidence interval are much higher than 50 (5% of 
1,000 simulations). As a result, the null hypothesis 
that PECOTA, ZiPS, and FanGraphs projected 
wins were plausible values of the actual wins are 
rejected at α = 0.05 level of significance. Year 2020, 
however, had a distinct pattern from other years. The 
Benjamini-Hochberg procedure, a balance between 
the liberal naive approach and conservative approach, 
shows the average K (3.7, 3.2, 3.4 with simulated 
results of Year 2020; 4.0, 3.4, 3.6 without Year 2020) 
and standard deviation (1.6, 1.4, 1.5 with Year 2020; 
1.4, 1.3, 1.3 without Year 2020) for PECOTA, ZiPS, 
and FanGraphs, respectively. With or without the 
simulated results of Year 2020, the One-way ANOVA 
test does not reject that the true average values of K 
for these three projection systems are the same at 5% 
level of significance.

5. Checking the Validity of Normality 
Assumption
The results obtained above is based on the multivariate 
normal assumption for the vector of actual wins X = 
[X1, X2, ..., X30]

′. Due to the limitation of the visual 
effect on higher dimensions, we have used the 95% 
probability plot to check the univariate normality for 
each component Xi, i = 1, 2, ..., 30. As well, we have 
used the 95% confidence contour plot to check the 
bivariate normality for each pair (Xi, Xj), 1 ≤ i ≠ j ≤ 
30. Note that there are totally 30C2 = 435 such pairs. 
There are no significant violations of the univariate 
normality for any component Xi, i = 1, 2, ..., 30 nor 
the bivariate normality for any pair (Xi, Xj), 1 ≤ i ≠ 
j ≤ 30, for the years of 2013-2024. To save space, 
we will not display the probability plots or confidence 
contour plots here.

6. Conclusion and Comments
With Models 1 and 2b, Tables 1-2 show that 30 out 
of all 36 projected wins were not plausible values 
of the actual wins of MLB teams at the 5% level of 
significance, except for PECOTA (2020), ZiPS (2016, 
2020), and FanGraphs (2013, 2016, 2020). Note that 
2020 is the pandemic year in which only 60 games 
were played in empty stadiums by MLB teams. Hence 
the winning percentages predicted in this special year 
may not reflect the true performance of teams in a 
usual regular season of 162 games played in fans-
supported stadiums. Table 3 using Model 2c shows 
that 25 out of 36 projected wins were not plausible 
values of the actual wins of MLB teams at α = 5% 
except for PECOTA (2014, 2020), ZiPS (2014, 2016, 
2020), and FanGraphs (2013-2016, 2018, 2020).
Since the assumption of independence of the numbers 
of wins by teams is violated, the number of wins by a 
team is further decomposed into the sum of numbers 
of wins in the matchup games against each team. This 
approach in Model 3 gives a more precise assessment 
for each number of wins in the matchup games and 
hence provides more accurate results. Table 4 using 
Model 3 reveals that 29 out of 36 projected wins were 
not plausible values of the actual wins of MLB teams 
at α = 5% except for PECOTA (2016, 2020), ZiPS 
(2016, 2020), and FanGraphs (2013, 2016, 2020). 
Furthermore, PECOTA had the smallest value of D2 for 
3 years, ZiPS for 4 years, and FanGraphs for 5 years, 
where D2 measures the statistical distance between 
the projected wins and actual wins in the model of 
matchup games. Thus the smaller value of D2 implies 
that the corresponding projection system performs 
better, i.e., producing more accurate projected wins 
for all 30 MLB teams as a whole.
The above results are based on the multivariate 
normal assumption for the vector of numbers of wins 

2021 671 7.7 576 5.9 522 6.4
2020 5 1.0 8 0.9 6 1.1
2019 446 3.7 434 2.9 441 4.4
2018 419 3.4 413 3.7 473 4.0
2017 274 3.0 327 3.5 317 3.5
2016 244 2.6 130 1.1 166 4.4
2015 303 3.9 213 2.8 222 2.8
2014 285 3.2 268 3.0 215 2.7
2013 350 3.5 428 3.9 195 1.2
Mean 364.5 3.7 319.9 3.2 289.7 3.4
St Dev 164.5 1.6 154.3 1.4 145.9 1.5
Mean* 397.2 4.0 348.3 3.4 315.5 3.6
St Dev* 125.1 1.4 124.8 1.3 120.9 1.3
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of 30 MLB teams. The checking of the validity of 
normality doesn’t show any significant violation of 
the assumption.

It is worth noting that the model of matchup games 
could also be applied to other professional sports 
such as NHL and NBA to assess the effectiveness of 
a projection system for its projected wins in a regular 
season.

It is extremely difficult to accurately predict the 
outcomes of the numbers of wins achieved by all 
MLB teams prior to a season of 162 games. There are 
so many unpredictable variables evolving in teams 
during the season. Some of these variables could be 
injuries of key players, adaptation of new players, 
errors made by players in games, etc. It seems that 
these three projection systems were not quite effective 
in predicting the numbers of wins achieved by MLB 
teams, although FanGraphs might look slightly more 
promising than the other two systems. Note that 
FanGraphs are the combination of Steamer and ZiPS. 
These projected wins, however, could serve as the 
expectation of the performance of each team prior to 
the start of a new season. As the season progresses, 
updates of the projected wins (as some projection 
systems are doing now) are necessary to reflect teams’ 
momentum, injuries of key players, etc. to readjust 
previous predictions to more accurate predicted 
numbers of wins for all MLB teams.
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